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Abstract 

ECHINACEA AND PRETERM LABOR: A NATURAL REMEDY 

Jordan Anne Estes,  

B.S., Lenoir-Rhyne University 

M.S., Appalachian State University 

Chairperson: Chishimba Nathan Mowa 

 Causally, premature births largely result from inflammation and current treatments 

are either unsafe or ineffective. Here, our goal was to test whether the use of natural products 

[Echinacea purpurea (L.) Moench, root extract] with anti-bacterial and -inflammatory 

activities and a long history of safe use could attenuate induction of inflammation in the 

cervix (birth canal). Studies using three different complementary models, specifically non-

pregnant in vivo, non-pregnant ex vivo and preterm labor models, were conducted.  We also 

sought to decipher mechanisms likely to mediate Echinacea’s anti-inflammatory activities by 

blocking the activity of heme-oxygenase-1 (HO-1).  Tissues were harvested and evaluated 

using real time-PCR, Western blot and/or histology. Here, we compare the suitability of the 

three models and show that Echinacea attenuates levels of the activated (phosphorylated) 

master inflammation transcription factor, nuclear factor kappa B (NFκB), and expression of 

select pro-inflammatory cytokines associated with inflammation-induced preterm labor. We 

also show that HO-1 may mediate Echinacea’s anti-inflammatory activities in the cervix.  

These findings are significant as they provide important data that could potentially lead to the 

development of natural strategies for modulating infection-induced preterm labor. 
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Introduction 

Overview 

 Premature labor is a common and costly health care condition, the magnitude of 

which is staggering.  Every minute approximately 1,400 babies are born prematurely 

throughout the world and over 100 of these infants die (Beck et al. 2010).  Causally, half of 

these premature births are known to result from precocious and abnormal presence of 

infection-induced inflammatory factors, such as tumor necrosis factor alpha (TNFα), during 

contractions and cervical (birth canal) opening.  While the exact mechanisms that underlie 

cervical opening are not completely understood, it may be secondary to a microbial infection 

triggering the induction of inflammation (Romero et al. 2006).  Current therapies for preterm 

labor are either unsafe to the fetus and/or mother, or are ineffective, so it is imperative that 

safe and effective therapies are developed to address this unmet medical need.  

 Plant extracts with a long history of safe use and well documented anti-microbial and 

anti-inflammatory activities, such as Echinacea, could potentially be used to attenuate 

inflammation-induced preterm labor in high-risk women (Barrett 2003, Goel et al. 2004, 

Barnes et al. 2005, Shah et al. 2007). Interestingly, Echinacea has been shown to decrease 

levels of some preterm labor-inducing or associated pro-inflammatory cytokines, such as 

TNFα, interleukin-1 (IL-1), and IL-6, in non-reproductive tissues (Burger et al. 1997, 

Rininger et al. 2000, Kim et al. 2002), in part, by attenuating expression of a plethora of 

cytokines (Burger et al. 1997, Rininger et al. 2000, Kim et al. 2002, Zhai et al. 2007).  It is, 
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therefore, feasible to speculate that Echinacea could potentially be used to modulate 

infection-induced preterm labor.   

Basics of Cervical Remodeling and the Birth Process 

 During pregnancy, the quiescent uterus provides a favorable environment for the 

growing fetus and the non-pliable cervix ensures retention of the fetus in utero. However, at 

term the cervix undergoes tissue remodeling or cervical ripening with a progressive 

dissociation and disorganization of collagen fibers and bundles that leads to softening and 

dilation of the cervix. At this time the uterus begins to contract and the cervix relaxes, and, 

collectively, these alterations facilitate a timely passage of the fetus at parturition (Kelly 

2002). Failure or disruption of these processes causes complications at parturition, such as 

preterm or protracted labor, that account for 75% of all infant deaths (Challis 2000).  

 

Physiological Changes Associated with Labor and Delivery in the Cervix 

The cervix is a fibrous, connective tissue mainly composed of collagen and 

proteoglycans (Sennstrom et al. 2000).  Cervical remodeling occurs in two general steps, the 

first being a slow stage, which extends over much of pregnancy, followed by a final rapid 

process, immediately preceding labor (Sennstrom et al. 2000).  The slow process shows a 

change in the turnover of matrix components, which results in reorganization of the 

collagenic fibrillar network, while the final ripening state shows an influx of neutrophils 

capable of secreting collagenase and elastase (Sennstrom et al. 2000).   During cervical 

remodeling, there is a 50-70% decrease in collagen and proteoglycan concentration, with an 

increase in collagen synthesis and this increased proteolytic activity coincides with an 

increase in solubility of collagen (Sennstrom et al. 2000).   Cervical remodeling is also 
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characterized by an increased accumulation of leukocytes in the cervical stroma before the 

onset of labor (Thomson et al. 1999, Young et al. 2002).  These leukocytes are responsible 

for the breakdown and subsequent remodeling of cervical tissue via the release of matrix 

metalloproteinases, prostaglandins, cells adhesion molecules, and nitric oxide (NO) 

(Thomson et al. 1999, Osman et al. 2003).   

Pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8 and TNFα, have been 

identified in reproductive tissues during labor (Young et al 2002).  In the cervix, each of 

these cytokines has been found in different locations within the tissue (Young et al. 2002).  

For example, IL-1β, IL-6, IL-8 and TNFα have all been shown to be localized to a 

subpopulation of leukocytes (possibly neutrophils), as well as glandular epithelial cells, 

luminal epithelia and stromal cells within the cervix (Young et al. 2002).  It has been 

suggested that the invading leukocytes are principally responsible for the noted increase in 

these pro-inflammatory cytokines (Young et al. 2002, Osman et al. 2003).  However, for the 

most part, their specific underlying mechanisms and function under physiological conditions 

remain obscure; it is unclear whether they are simply the byproducts of another 

pathophysiological event (Young et al. 2002).  Either way, it is likely that they do function to 

stimulate uterine activity, either directly or indirectly, via perhaps an increase in 

prostaglandin production, attraction of leukocytes, membrane rupture and/or tissue 

remodeling under pathological conditions, notably during infection (Young et al. 2002).  

Specifically, IL-1β and TNFα stimulate arachidonic acid release and the subsequent 

prostaglandin production in human myometrial cells, which then stimulate myometrial 

contractions and ultimately ripening of the uterine cervix (Young et al. 2002).  IL-1β and 

TNFα are also known to increase production of matrix metalloproteinase-9 in human 
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myometrial smooth muscle cells and may therefore play a role in precocious tissue 

remodeling associated with obstetrical complications, such as preterm labor (Young et al. 

2002).   

 

Preterm Labor 

In humans, preterm labor is defined as labor occurring prior to 37 weeks gestation 

(Simhan & Caritis 2007) and is the leading cause of death in children under 5 years of age, 

second only to pneumonia (Blencowe et al. 2012).   

 

Epidemiology: According to the World Health Organization, 15 million babies are born 

prematurely each year worldwide, with the majority of these births coming from Nigeria, 

China, India, the United States and Brazil (Blencowe et al. 2012).  Currently, the global 

average percentage of preterm birth rate is 11.1% (Wen et al. 2004) and according to the 

March of Dimes report card, in 2012 the United States (US) earned a grade of “C” at 11.7% 

(March of Dimes, 2012).The US intends to reduce its rate down to 9.6% by 2020 (March of 

Dimes, 2012).  Nationally, Mississippi has the highest rate at 16%, while Vermont has the 

lowest rate, at 8%.  North Carolina’s rate is at 12.6%, earning it a grade of “C” and is slightly 

higher than the national average (March of Dimes, 2012).  Premature births cost the United 

States healthcare system $26 billion a year (Beck et al. 2010).   

 

Preterm Labor Biology:  Pathogenesis: While nearly 40% of premature births have an 

unknown cause, studies suggest that there are four main causes of spontaneous preterm labor, 

namely: a) maternal and/or fetal stress, b) bleeding, c) stretching and d) 
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infections/inflammation (Goldenberg et al. 2002, Simhan & Caritis 2007, Beck et al. 2010).  

Chronic psychosocial stress of the mother or physical stress in the fetus induce production of 

corticotropin-releasing hormone (CRH), which in turn may trigger other hormones, such as 

prostaglandins, which trigger uterine contractions and eventually preterm birth (Goldenberg 

et al. 2002).  Uterine bleeding as a result of complications such as placental abruption 

(placenta peels away from the uterine wall before delivery), which may trigger release of 

proteins involved in clotting, such as thrombin, which in turn stimulates uterine contractions 

(Goldenberg et al. 2002).  Uterine distension by multi-fetal pregnancies may lead to 

increased gravitational weight exerted on the cervix and a positive feed-forward release of 

the hormone oxytocin, which stimulates uterine contractions (Goldenberg et al. 2002).  The 

bulk of preterm labor is induced by bacterial infections that lead to inflammation and preterm 

labor and account for the preterm premature rupture of membranes (PROM) (25-40%), and 

obstetrically indicated preterm delivery (20-25%) (Goldenberg et al. 2002, Wen et al. 2004).   

Risk factors: Several lifestyles and factors have been identified to put a woman at risk 

for preterm birth, including: a) a history of preterm birth; b) size or multi-fetal pregnancies; 

c) certain uterine or cervical abnormalities (such as shortened cervix); d) ethnicity, with the 

highest rate in black women; e) age, with teenage or older mothers at the greatest risk; f) 

education and socio-economic status highest in women with low education and socio-

economic status; g) habits, such as cigarette smoking increase the risk; h) marital status: 

unmarried women or those not living with a partner are at a higher risk; i) occupation: 

women with stressful occupations are at a higher risk; j) body weight: low maternal pre-

pregnancy body mass index, and poor or excessive weight gain increase the likelihood of a 

preterm birth (Goldenberg et al. 2002, Wen et al. 2004).  Of all these risk factors cited above, 
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the top three are: a) history of preterm birth, b) size or multi-fetal pregnancies, and c) certain 

uterine or cervical abnormalities (such as shortened cervix) (Goldenberg et al. 2002, Wen et 

al. 2004). 

Diagnostics: Risk scoring systems, uterine contraction monitoring, cervical 

sonography and fetal fibronectin testing are several tools frequently utilized in the prediction 

and early detection of preterm birth, with the most promise seen from cervical length 

measurement and fibronectin tests (Wen et al. 2004).   Cervical length is determined using 

trans-vaginal ultrasound (Shennan & Jones 2004).  According to cervical assessments in 

women without contractions, studies of both lower- and higher-risk women have shown that 

the shorter the cervix (less than 25 mm), the more likely a preterm birth will occur (Shennan 

& Jones 2004).  Fetal fibronectin is produced by fetal and placental tissue and acts as the 

“glue” that adhere the placental membranes to the endometrium and is normally detected in 

vaginal secretions up to week 22 of gestation, and again 1 to 3 weeks before delivery (Iams 

2003, Shennan & Jones 2004).   Fibronectin found in cervicovaginal secretions after 22 

weeks is an indicator of disruption of the decidual-chorionic interface and has been shown to 

be associated with a six-fold increased risk of preterm birth before 35 weeks, and a 14-fold 

increased risk of preterm birth before 28 weeks (Iams 2003).  In addition to cervical 

measurements and fetal fibronectin tests, there are various but less reliable markers that can 

be used to predict spontaneous preterm birth (Kim et al 2011).  These include leukocyte 

differential counts and neutrophil to lymphocyte ratio (Kim et al 2011), levels of serum IL-6 

and TNFα, which are elevated during preterm labor, IL-1β, IL-6, IL-8, and IL-18 in 

cervicovaginal secretions, where they are elevated during preterm labor (Kim et al 2011).   
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Current therapies: Stopping uterine contractions has been the focus of current 

therapeutic approaches, based on the assumption that clinically apparent contractions 

correspond with the initiation of labor, and therefore the prevention of contractions should 

prevent labor (Simhan & Caritis 2007).  Inhibition of myometrial contractions is called 

tocolysis, and drugs administered for such a purpose are called tocolytics (Simhan & Caritis 

2007).  The aim of this treatment regimen is to delay delivery so that interventions, such as 

corticosteroid shots can be implemented (Wen 2004).  Corticosteroids help enhance 

development of lungs and particularly secretion of pulmonary surfactant, which reduces the 

risk of neonatal respiratory distress syndrome, intra-ventricular hemorrhage, necrotizing 

entercolitis, and overall perinatal death (Wen 2004).  There are many classes of tocolytics, 

each with their own advantages and short-comings, including: a) beta adrenergic receptor 

agonists (terbutaline), b) nitric oxide (NO) donors, c) magnesium sulfate, d) calcium channel 

blockers (nifedipine), e) cyclooxygenase (COX) inhibitors (indomethacin), and f) oxytocin-

receptor antagonists (Simhan & Caritis 2007).  While tocolytics are good for temporal 

inhibition of contractions, most do not help decrease preterm birth and pose serious negative 

side effects both to the mother and fetus, notably low birth weight, neonatal complications, 

and increase in risk of death (Wen et al. 2004, Simhan & Caritis 2007).  Currently, the only 

therapy that targets the cervix to prevent spontaneous preterm birth is elective cervical 

cerclage (Wen et al. 2004).  In cerclage, a stitch is inserted in the cervix to keep it closed, and 

removed around 37 weeks of pregnancy (Wen et al. 2004).  Studies have shown that this 

procedure may have some significant effect in reducing preterm births before 34 weeks of 

gestation. However, more studies are needed to identify women who would most benefit 

from cerclage (Simhan & Caritis 2007).  Lastly, for infection-induced preterm labor, which 
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accounts for the bulk of spontaneous preterm birth and the focus of the current study, 

antibiotics are currently the treatment of choice. However, for the most part, they also have 

side effects; especially to the fetus (Wen et al. 2004). 

 

Infection/inflammation-induced preterm labor: As stated earlier, intrauterine 

infection/inflammation is frequently associated with preterm labor (Romero et al. 2002, 

Romero et al. 2006).  Studies have suggested that preterm labor is often triggered by the 

body’s response to certain bacterial infections, such as those involving the genital, urinary 

tracts and fetal membranes (Goldenberg et al. 2002).  Microorganisms may gain access to the 

amniotic cavity and fetus through many different routes, including ascension via the vagina, 

fetal membranes and amniotic cavity (Romero et al. 2006).  The entry of lower genital tract 

bacteria into the decidua trigger the recruitment of leukocytes, notably via binding to toll-like 

receptors (TLRs), ultimately leading to an increase in cytokine production (Klein & Gibbs 

2004).  

Toll-like receptors recognize foreign invaders, including microorganisms, and this 

receptor system is believed to play a significant role in infection-mediated preterm birth 

(Challis et al. 2009).  For example, TLR4 can be activated by lipopolysaccharide (LPS), a 

major cell well component of gram-negative bacteria, as well as fragments of fetal 

fibronectin (Tsan & Gao 2004, Challis et al. 2009).  LPS can activate TLR4 and trigger 

NFκB, a hallmark signal transduction pathway for innate immune responses (Chow et al. 

1999, Da Silveira Cruz-Machado et al. 2010).  NFκB is highly activated at sites of 

inflammation and can induce transcription of the pro-inflammatory cytokines previously 

described to be involved in labor (Tak & Firestein 2001).   
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Upon LPS recognition, TLR4 recruits its downstream adaptors through interactions 

with toll-interleukin-1 receptor (TIR) domains (Poltorak et al.1998).  One of the five TIR 

domain-containing adaptor proteins is myeloid differentiation primary response gene 88 

(MyD88) (O’Neill & Bowie 2007).  MyD88 also contains a death domain (DD), which can 

recruit and activate a death domain-containing kinase, IL-1 receptor associated kinase-4 

(IRAK-4) (Suzuki et al. 2002).  Another adaptor protein, TNF receptor-associated factor 6 

(TRAF-6) is critical for the MyD88-dependent pathway downstream of IRAK-4 (Lu et al. 

2008).  TRAF6 activates transforming growth factor-β-activated kinase 1 (TAK1), which 

then activates downstream IKK (IκB kinase) and mitogen-activated protein kinase (MAPK) 

pathways (Lu et al. 2008).  NFκB exists in the cytoplasm in an inactivated form associated 

with inhibitors of κB (IκB) (Tak & Firestein 2001).  Phosphorylation of IκB leads to the 

degradation of IκB proteins and translocation of the transcription factor NFκB into the 

nucleus, which controls the expression of pro-inflammatory cytokines via binding of NFκB 

to κB enhancer elements of target genes, inducing transcription of pro-inflammatory 

cytokines (Tak & Firestein 2001).  Activation of the downstream MAPK pathways leads to 

induction of another transcription factor, activator protein-1 (AP-1), which also has a role in 

the expression of pro-inflammatory cytokines (Chang & Karin 2001).   

There are three major subfamilies of MAP Kinases: extracellular signal-related kinase 

(ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK (Kyriakis & Avruch 2001).  These 

pathways can be activated by a wide variety of stimuli acting through different receptor 

families, such as hormones and growth factors acting through receptor tyrosine kinases, or 

cytokine receptors (Kyriakis & Avruch 2001).  It is generally accepted that there are many 

MAPK pathways existing in parallel and in conjunction with the NFκB pathway, and that 
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these pathways are important to stress and inflammatory responses, including up regulation 

of cytokines, commonly seen in the inflammation-induced preterm labor (Kyriakis & Avruch 

2001).   

Some of the relevant pro-inflammatory cytokines associated with preterm labor 

include TNFα, IL-1β, IL-6 and COX-II (Romero et al. 2006).  IL-10 is one of the many anti-

inflammatory cytokines which acts to counter-balance an overreaction from pro-

inflammatory cytokines during infection or pregnancy (Thaxton & Sharma 2010).  For 

instance, IL-10 levels are higher during preterm labor, perhaps as a response to high 

circulating levels of pro-inflammatory cytokines, such as IL-1β (a pro-inflammatory 

cytokine) (Dubicke et al. 2010).  Cytokines have been found to trigger prostaglandin 

synthesis in the amnion, chorion, decidua, myometrium, and cervix, among other things 

(Young et al. 2002, Klein & Gibbs 2004).  This then leads to uterine contractions, cervical 

dilation, membrane exposure, and greater entry of microbes into the uterine cavity.  

Cytokines, such as IL-6, have also been found to stimulate production of matrix 

metalloproteinases by the chorion and amnion (Young et al. 2002, Klein & Gibbs 2004).  

Matrix metalloproteinases are implicated in cervical ripening as well as degradation of the 

fetal membranes (Young et al. 2002, Klein & Gibbs 2004).  There has also been evidence 

supporting a relationship between periodontal disease and preterm delivery (Romero et al. 

2006).  However, intrauterine infections caused by bacteria are currently considered to be the 

leading cause of infection-induced preterm birth (Romero et al. 2006).  The most common 

microbial isolates from the amniotic cavity and intact membranes of women with preterm 

labor are Ureaplasma urealyticum (U. urealyticum), Fusobacterium species and Mycoplasma 

hominis (Romero et al. 2002, Romero et al. 2006).  In contrast, vaginal colonization by 
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organisms such as U. urealyticum and Candida species has not been shown to cause preterm 

birth. However, U. urealyticum is found in the amniotic fluid and has a prevalence of 6% of 

patients with preterm birth (Romero et al. 2006).     

Antibiotic trials to prevent preterm birth have been conducted using three different 

designs: a) antenatal treatment of lower genital tract infection caused by specific organisms; 

b) treatment of preterm labor with intact membranes; c) treatment after preterm premature 

rupture of membranes (PPROM) (Klein & Gibbs 2004).  Based on data from these trials, 

compelling evidence supports intervention in clinical practice.   

Antenatal treatment of lower genital tract infection caused by specific organisms:  

Certain organisms and/or infections have been associated with preterm birth and make up the 

list of candidate infections for antenatal treatment, such as: U urealyticum, group B 

streptococci, Neisseria (N) gonorrhoeae, Chlamydia (C)trachomatis, Trichomonas (T) 

vaginalis, bacteriuria, and bacterial vaginosis (BV) (Klein & Gibbs 2004).  Although U 

urealyticum does not appear to cause preterm birth, it can become pathogenic if it gains 

access to the upper genital tract (Klein & Gibbs 2004).  For this reason, following clinical 

trials, it was found that screening and/or treatment of lower genital U urealyticum to prevent 

preterm birth, is not helpful and should, therefore, be avoided, in the absence of upper genital 

tract infection (Klein & Gibbs 2004).  Rectovaginal group B streptococci should not be 

treated antenatally either to prevent preterm birth; however, group B streptococcal bacteriuria 

should be screened for and treated to prevent preterm birth (Klein & Gibbs 2004).  Also, the 

sexually transmitted organisms N gonorrhoeae and C trachomatis should be screened for and 

treated to prevent spread and vertical transmission (Klein & Gibbs 2004).  Screening for and 

treatment of bacteriuria in pregnancy has been found to prevent symptomatic urinary tract 
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infection as well as preterm birth (Klein & Gibbs 2004).  Women with symptomatic T 

vaginalis infections in pregnancy have successfully been treated with oral metronidazole, 

which has been shown to be safe in the first trimester of pregnancy (Klein & Gibbs 2004).  

Asymptomatic T vaginalis, however, should not be screened for or treated based on a large 

clinical trial that shows the absence of benefit as well as increased risk of preterm birth 

(Klein & Gibbs 2004).  The association between BV and preterm birth is an interesting one, 

with BV being found in 10-25% of women – BV can be diagnosed via gram stain, and 

approximately 50% of women with BV are asymptomatic.  Unfortunately, results of 

treatment trials for BV have been conflicting, with some trials showing a reduction in 

preterm birth when BV was screened for and treated and some trials showing no benefit of 

screening and treating overall (Klein & Gibbs 2004).  On the basis of a number of clinical 

studies, however, it is suggested that screening and treatment of high-risk women are 

warranted with a recommended oral regimen lasting seven days (Klein & Gibbs 2004).   

Antibiotic treatment in preterm labor with intact membranes:  Several studies have 

reported the use of antibiotics to prolong pregnancy in women in preterm labor with intact 

membranes (Kenyon et al. 2001, King & Flenady 2003).  The overall use of antibiotics, 

however, did not decrease preterm birth, delivery within 48 hours, or perinatal mortality rates 

compared to women not treated with antibiotics (Kenyon et al. 2001).  In a meta-analysis 

from the Cochrane Library, many trials were assessed, with the overall conclusion that the 

routine administration of antibiotics to women with preterm labor and intact membranes 

could not be recommended, as there were no clear improvements in neonatal outcomes and 

potentially a trend toward increased neonatal deaths (King & Flenady 2003).   
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Antibiotic treatment after preterm premature rupture of membranes (PPROM):  

Several large trials have been conducted to assess this area (Klein & Gibbs 2004).  One such 

trial assessed patients taking ampicillin and erythromycin for seven days compared to 

placebo in women with PROM from 24-32 weeks gestation, finding women given antibiotics 

were far more likely to remain undelivered at 2, 7, 14 and 21 days compared to placebo 

(Mercer et al. 1997).  Another trial showed small but significant benefits in oral antibiotic 

therapy for 10 days with erythromycin or amoxicillin or both compared to placebo (Kenyon 

et al. 2001).  As a result of comparing these studies, it has been suggested that the routing 

prescription of antibiotics (specifically erythromycin) in women with PPROM can be 

associated with better maternal and fetal outcome (Klein & Gibbs 2004).   

With mounting evidence that antibiotic treatment can be beneficial only in certain 

cases of preterm labor, the question remains as to why antibiotics do not regularly decrease 

premature birth.  There are several explanations that have been suggested, such as: a) 

bacterial lysis by antibiotics, which can hasten preterm labor; b) prescription of the wrong 

antibiotic, since the organism responsible for infection-induced preterm labor is not known in 

many cases; and most convincingly c) the fact that once clinical signs have manifested, the 

inflammatory cascade has progressed too far to be affected by antibiotics (Klein & Gibbs 

2004).  This, in conjunction with the magnitude of redundancy in the cytokine network, 

demonstrates the limitations of blocking one single factor in preventing 

infection/inflammation-induced preterm labor (Klein & Gibbs 2004, Romero et al. 2006). 

This reality calls for alternative approaches to managing infection-induced preterm labor, 

such as the use of natural remedies with anti-bacterial and –inflammatory activities, e.g., 
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Echinacea. One possible factor that mediates Echinacea’s anti-inflammatory activities, 

among others, is heme-oxygenase 1 (HO-1) in the liver (Otterbein et al. 2003). 

 

Heme oxygenase (HO)-1  

 HO-1 is an enzyme that catalyzes the breakdown of heme into three products: 

carbon monoxide (CO), biliverdin, and free iron (Otterbein et al. 2003).  HO-1 plays tissue-

protective roles under normal and physiological conditions, including anti-inflammatory, 

anti-apoptotic, and anti-proliferative actions in endothelial, epithelial and smooth muscle 

tissues, to name a few (Otterbein et al. 2003).The anti-inflammatory properties of HO-1 have 

been further supported by the fact that HO-1 deficient mice develop a chronic inflammatory 

disease state that progresses with age (Otterbein et al. 2003). 

 There is strong evidence suggesting that the by-products of heme catabolism 

mediate the protective function of HO-1 (Otterbein et al. 2000).  One study suggests that 

carbon monoxide (CO) can selectively modulate the cascade of pro-inflammatory and anti-

inflammatory cytokines. Of interest to the current study, CO has been shown to inhibit LPS-

induced production of TNFα, IL-1β, while increasing IL-10 production in these same cells 

(Otterbein et al. 2000).  In this particular study, the anti-inflammatory effects of CO involve 

the MAP kinase signaling pathway, specifically the MKK3/p38 MAP kinase pathway 

(Otterbein et al. 2000).  This is based on several observations: CO had no effect on 

ERK1/ERK2 or JNK MAP kinases.  It is also known that HO-1 is mediated by the p38 MAP 

kinase pathway in response to oxidative stress (Otterbein et al. 2000).  Unfortunately, the 

precise mechanism used by CO to modulate the MAP kinases remains unclear (Otterbein et 

al. 2000) and Echinacea’s effects and the role of HO-1 in mediating its (Echinacea) anti-
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inflammatory activities in infection-induced preterm labor in the cervix have not been 

studied.  

 

Echinacea 

Overview: Echinacea angustifolia, a member of the Compositae family and known as 

the purple coneflower, has been used for centuries by Native Americans for pain relief and 

wound treatment, an antidote against various poisons, and for symptoms associated with the 

common cold (administrative routes used unclear) (Borchers et al. 2000, Barrett 2003, 

Barnes 2005, Goel et al. 2004, Shah et al. 2007).  Of the nine species of Echinacea only 

three are used in herbal remedies, namely Echinacea (E) angustifolia, E. pallida and E. 

purpurea, referred to as Echinacea from henceforth (Hobbs 1989, McKeown 1999).  What is 

commonly called Echinacea in the United States is likely one of the three mentioned species, 

or a combination of two or even all three of them (Borchers et al. 2000).   

Biological activities: There are substantial differences in the chemical compositions 

and biological activities between different species, as well as between their roots and aerial 

parts (Borchers et al. 2000).  Recently, many of these claims have been confirmed 

experimentally using modern research technologies (Raso et al. 2002), including Echinacea’s 

anti-fungal, anti-cancer, anti-viral, antioxidant, and anti-inflammatory properties (Raso et al. 

2002, Barrett 2003). The current study focuses on Echinacea’s anti-inflammatory properties.  

For instance, Echinacea has been shown to attenuate key inflammatory pathways, notably the 

NFκB signaling pathway, which results in up-regulation of COX-II and other pro- and anti-

inflammatory cytokines (TNFα, IL-6, and IL-10) (Raso et al. 2002).  Because Echinacea has 

been shown to decrease levels of preterm labor-inducing or associated pro-inflammatory 
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cytokines, such as TNFα, IL-6, IL-10 and IL-1, in non-reproductive tissues (Burger et 

al.1997, Rininger et al. 2000, Kim et al. 2002, Zhai et al. 2007),  it is reasonable to speculate 

that Echinacea could potentially be used to modulate infection-induced preterm labor.    

 Subfractions: Within a hydro-ethanolic extract of Echinacea, there are many sub-

fractions which may be responsible for the well-documented anti-inflammatory properties.  

For example, hydro-ethanolic extract of Echinacea (which is the most commonly used 

vehicle) contains two major groups of compounds, namely caffeic acid conjugates and 

alkylamides, the two main bioactive alkylamides being dodeca-2E, 4E, 8Z, 10Z-tetraenoic 

acid isobutylamide and dodeca-2E, 4E- dienoic acid isobutylamide (Stevenson et al. 2005, 

Matthias et al. 2007).  Although these isolates have been shown to have immunomodulatory 

effects, their exact underlying pathway or their specific bioactive ingredients are yet to be 

identified (Stevenson et al. 2005, Matthias et al. 2007).  Currently, no industry 

standardization is required for the amount of individual chemical constituents in commercial 

preparations of Echinacea (Toselli et al. 2009) but many Echinacea extracts are standardized 

to cichoric acid (or total phenols), implying that cichoric acid may account for its biological 

activities (Stevenson et al. 2005, Matthias et al. 2007).   

Metabolism: Among the phytochemicals found in Echinacea, the bioavailable 

alkylamides are thought to be the compounds responsible for the immunomodulatory effects 

in the human (Toselli et al. 2009).   Human liver microsomes have been shown previously to 

degrade certain alkylamides in a time-dependent manner, suggesting that these components 

are metabolized by cytochrome p450 enzymes (Toselli et al. 2009, Toselli et al. 2010).  

There are two main groups of active compounds in the hydro-ethanolic extracts of 

Echinacea: i.e., a) lipophilic compounds, such as alkylamides, and b) hydrophilic compounds 
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mainly consisting of caffeic acid derivatives (Toselli et al. 2009).  These two main groups 

work together and are found mainly in commercial ethanolic extracts.  Alkylamide 

concentrations are highest in the roots of the plant and at least eight alkylamides present in 

hydro-ethanolic Echinacea preparations were bioavailable after oral ingestion, while, in 

contrast, caffeic acid derivatives were not detected in circulation. Absorption of alkylamides 

was found to be rapid after ingestion, and serum alkylamide concentrations typically reached 

their maximum levels 20-45 minutes after ingestion.  Another study showed plasma levels of 

people who ingested Echinacea tablets showed no caffeic acid conjugates after ingestion; 

alkylamides were rapidly absorbed and were measureable in plasma 20 minutes after 

ingestion and detectable for 12 hours afterward (Matthias et al. 2005).  These studies 

collectively suggest that caffeic acid conjugates and cichoric acid have poor bioavailability, 

leaving alkylamides as the likely mediator of Echinacea’s therapeutic effects (Matthias et al. 

2007). 

 

Purpose of Study   

In the present study, we test the effectiveness of a whole ethanolic root extract of 

Echinacea to attenuate lipopolysaccharide (LPS)-induced expression of some of the key pro-

inflammatory factors associated with precocious cervical remodeling during preterm labor 

using three mice models, namely in vivo, ex vivo and preterm labor models. Our primary 

hypothesis is that Echinacea can be used to modulate inflammation-induced precocious 

cervical remodeling.  Here, we focus on investigating Echinacea’s ability to attenuate the 

expression of pro-inflammatory factors in the cervix and their likely underlying mechanisms. 
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Methods and Materials  

Animals Used in the Study 

 Mice from Charles River, strain C57BL6/129SvEv, were used in the present study 

(n=3-7) for all the experiments described below, including Echinacea optimization (dose, 

route, frequency, duration) using the ex vivo and in vivo models and in mechanism studies, as 

described below. All animals used in ex vivo and mechanism (ex vivo + in vivo) studies were 

ovariectomized non-pregnant mice, whereas in vivo studies included both ovariectomized 

non-pregnant and preterm labor mice models (day 15 pregnant animals treated with LPS).  

Animals were housed under constant room temperature (21°C), with a 12:12h light and dark 

cycle and had free access to water and feed. All experiments were performed in accordance 

with the Guide for the Care and Use of Laboratory Animals of the local institution 

(Appalachian State University) and the NIH guidelines (NIH publication number 86-23), and 

efforts were made to minimize both animal suffering and numbers of animals used. After 

their respective treatments and prior to tissue harvest, mice were administered a lethal dose 

of sodium pentobarbital (Sleepaway®, Fort Dodge Laboratories Inc., Burlingame, CA), 

immediately followed by trans-cardio perfusion using 0.9% normal saline solution. No trans-

cardio perfusions were performed for ex vivo studies.  All uterine cervical tissues were 

carefully harvested under a stereomicroscope, to avoid tissue contamination from vaginal or 

uterine tissues, and the tissues were then processed and analyzed appropriately using various 

techniques, including Western blot analysis and real time polymerase chain reaction (real 

time PCR), as described below. Immediately following tissue harvest, tissues for ex vivo 
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studies were placed in 48 well plates containing fresh media (RPMI 1640 supplemented with 

10% Fetal Bovine Serum) and incubated, as described below.  

 

Surgery: Ovariectomies (ovary removal)  

 Before treatments or tissue harvest, sexually mature non-pregnant mice ~ 6 weeks 

old, weighing between 30-40g, were ovariectomized. Prior to surgery, animals were 

anaesthetized using a mixture of ketamine (43-129 mg/g body weight) and xylazine (8.6-26 

mg/g body weight), followed immediately after surgery by administration of Baytril® 

antibiotic (Bayer, Leverkusen, Germany), to prevent post-surgery infections. Animals were 

then allowed to rest for seven days post-surgery before performing experiments, to allow 

removal of residual ovarian sex steroid hormones, confirmed during tissue harvest by 

significant reduction in uterine size. Animals with normal uterine size, seven days after 

ovariectomy, were eliminated from the study.  

  

Optimization Studies and Treatments 

Based on previous studies, conditions were optimized for non-pregnant and pregnant 

in vivo models.  The following conditions were found to be optimal and used in subsequent 

non-pregnant in vivo experiments:  Echinacea was given at a dose of 1 mg/mouse via inter-

peritoneal (IP) injection route, followed by LPS administration at 100 µg/mouse four hours 

after Echinacea dose, and one hour prior to cervical tissue harvest, as illustrated in Figure 1.  

After treatment and prior to cervical tissue harvest, animals were euthanized with sodium 

pentobarbital (Sleepaway®, Fort Dodge Laboratories Inc., Burlingame, CA). 
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Figure 1 Illustration showing schedule of injections for non-pregnant, in vivo model 

 

Pregnant animals from day 15 of pregnancy were used and induced with preterm labor, 

based on the previously reported animal model for preterm labor - 250 μg of intra-uterine 

LPS; (Elovitz & Mrinalini 2005).  Preliminary studies in our lab also yielded optimal 

conditions for preterm model treatments, and were found to be as follows: initial injection of 

Echinacea (1 mg/mouse) at time 0 h, with boosters at times 4 h and 8 h, respectively, with 

animals euthanized at time11 h post initial Echinacea injection, as shown in Figure 2 below. 

LPS was administered one hour after the last booster of Echinacea, i.e., time 9 h. After 

treatment and prior to cervical tissue harvest, animals were euthanized with sodium 

pentobarbital (Sleepaway®, Fort Dodge Laboratories Inc., Burlingame, CA). 
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Figure 2 Illustration showing schedule of injections for pre-term labor model 

 

Development of Ex Vivo Model 

The rationale for using the ex vivo model, which was an entire cervical tissue excised 

from a non-pregnant ovariectomized mouse, was to study Echinacea’s anti-inflammatory 

activities under a more controlled environment (a 48 well microtiter plate) in which treatment 

conditions could be performed without interference from endogenous ovarian sex steroid 

hormones.  With this being the first study of its kind, the development of the ex vivo model 

and the subsequent treatments had to be optimized, and were performed as follows: 

Determination of optimal media for ex vivo studies: Two types of media were tested 

in order to determine the optimal medium for incubating ex vivo uterine cervical tissues.  

These included: HyClone RPMI [1640 1X with 2.05 ml L-glutamine (Thermo Scientific)], 

supplemented with 10% fetal bovine serum (Lonza Biowhittaker) and HyClone DMEM 

[High Glucose with 4.00 mM L-glutamine and 4500 mg/L glucose and sodium pyruvate 

(Thermo Scientific)], also supplemented with 10% fetal bovine serum (FBS) (Lonza 

Biowhittaker). The 0.1M PBS buffer only-treated group was used as a negative control. 

Harvested tissues were briefly rinsed in cold 0.1M PBS buffer and immediately placed into 
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their respective wells in a 48-well plate, with each well either containing 250 µl of: a). 0.1M 

PBS, b). DMEM, or c). RPMI.  The plates were incubated for 24 h in HERAcell 150i CO2 

incubator (set at 5% CO2) at 37°C (Thermo Scientific). At the end of the 24 h period, all 

tissues were harvested and either stored at -80°C for molecular analysis (real time PCR and 

Western blot analysis) or fixed in 10% formalin for histological analysis.  RPMI media was 

found to be the optimal medium, based on the morphological and molecular parameters, and 

thus was used in subsequent studies. 

Determination of optimal duration for tissue integrity, viability and survival in ex vivo 

model: Animals were divided into six treatment groups (n=1) and uterine cervical tissues 

were harvested, briefly rinsed in 0.1M PBS buffer and incubated, based on the six treatment 

groups in the 48-well plates, as described earlier. Uterine tissues were incubated for: 1 h, 4 h, 

8 h, 12 h, 16 h or 24 h, harvested and either fixed in 10% formalin for histological analysis or 

stored in -80°C for molecular analysis.   

Determination of optimal dosage and time for Echinacea and LPS: Uterine cervical 

tissues were harvested from mice, then the optimal time and dosage for Echinacea and LPS 

treatments (n=3) for the ex vivo model were determined.  To determine the optimal time for 

incubating, tissues in the negative (only vehicle, i.e., 0.1M PBS buffer) and LPS alone (LPS, 

1µg per well) control groups were incubated in the 48 well plates for 6 h, 12 h and 24 h. 

Tissues were then harvested and stored at -80°C, processed for and examined using real-time 

PCR and Western blot analysis. The 6 h incubation was determined to be the optimal 

duration, based on the molecular data and was, therefore, used in section 2 (optimal dosage). 

To determine the optimal dosage for the incubations, tissues were incubated for 6 h under 

varying treatment conditions.  There was an Echinacea only group (0.1 mg/well), and a dose 
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response group, namely Echinacea [0.01 (low), 0.1 (medium) or 1.0 (high) mg/well)] + LPS 

(1 μg per well), added an hour later, as well as a negative control (media only) and an LPS 

only group (1 μg per well). Tissues were then harvested 6 h post LPS treatment, after which 

they were stored at -80°C, and examined later using real-time PCR and Western blot 

analysis.  

For all subsequent ex vivo model experiments, the following optimal parameters were 

utilized: 6 h incubation, 1 µg of LPS per well and 1.0 mg of Echinacea per well. 

 

Mechanism of Action (In vivo, non-pregnant mice)  

 In order to determine whether HO-1 mediates Echinacea’s anti-inflammatory 

activities in the cervix of mice treated with LPS, the HO-1 inhibitor zinc protoporphyrin, 

(ZnPP) was used to test if it can attenuate HO-1’s anti-inflammatory mediatory actions in a 

dose-dependent manner.  Mice were divided into six treatment groups, with all treatments 

administered via IP, in 50 μl per mouse (n=3), as described here: negative control (ZnPP 

vehicle only, i.e., only 1% DMSO); LPS only (100 μg LPS), ZnPP only control (0.125 

mg/mouse), low ZnPP + Echinacea + LPS [ZnPP, 0.0125 mg/mouse; Echinacea, 1 

mg/mouse; LPS,100 μg of LPS per mouse], medium ZnPP + Echinacea + LPS [ZnPP, 0.125 

mg/mouse; Echinacea and LPS dosages, same as in sections above],  high ZnPP + Echinacea 

+ LPS [ZnPP, 1.25 mg/mouse; Echinacea and LPS dosages, same as described above]. 

Treatment groups that received Echinacea were administered first with Echinacea extract 

(one injection), as well as ZnPP (one injection), followed two hours later by LPS (100 

μg/mouse) and two hours post-LPS injection, the mice were euthanized. Cervical tissues 

were then harvested and stored at -80°C, and examined later using Western blot analysis. 
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Techniques Used in the Study 

Harvested tissues were processed appropriately and analyzed using gene (real time PCR) 

and protein (Western blot) expression techniques, as well as basic histology (H&E staining), 

as described below: 

Gene expression studies (real time PCR):  Gene expression analysis was performed using 

qRT-PCR to determine the extent to which Echinacea influenced mRNA expression of pro-

inflammatory factors such as IL-6 and COX-II as well as HO-1 in the cervix of both pregnant 

and non-pregnant mice.  Gene expression analysis was performed in three steps, as described 

below:   

 Tissue processing, messenger RNA isolation, and quantification:  Following 

treatments, animals were euthanized and trans-cardially perfused with normal saline (0.9% 

sodium chloride).  The cervices were harvested immediately, snap-frozen and either 

processed or stored at -80ᵒC until processing. Total RNA was isolated from individual 

cervices using the RNeasy Mini Kit (Qiagen, Valencia, CA) and then the quality and quantity 

of each sample was estimated using Nanodrop Spectrophotometer (NanoDrop 3000, Thermo 

Scientific).  Aliquots of total RNA were diluted in RNase-free deionized (DI) water and 

either stored at -80ᵒC or processed for reverse transcriptase PCR.  

 Reverse transcriptase PCR (RT-PCR): Total RNA from the cervical tissue was 

reverse-transcribed and amplified in an Eppendorf Master Cycler (Hamburg, Germany) using 

reagents from Applied Biosystems (Foster, CA). For generation of complementary DNA 

(cDNA), 1.0 µg of previously isolated total RNA was placed in a total volume of 9.5 µL per 

sample with RNase-free water, as determined by Nanodrop Spectrophotometer. The RNA 

incubated for 5 minutes at 65°C and cooled to room temperature for 10 minutes. During the 
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cooling period, 9.5 µL of a reverse transcriptase master mix was added to each tube, which 

was comprised of the following: reverse transcriptase buffer (2 µL per tube of RNA; Applied 

Biosystems, Foster, CA); MgCl2 (2 µL per tube of RNA; Applied Biosystems, Foster, CA), 

dNTP (2 µL per tube of RNA; Applied Biosystems, Foster, CA); RNase inhibitor (0.5 µL per 

tube of RNA; Applied Biosystems, Foster, CA); RNAse-free water (2µL per tube of RNA; 

Applied Biosystems, Foster, CA); and random hexamers (1 µL per tube of RNA; Applied 

Biosystems, Foster, CA). Lastly, 1.0 µL of MuLV reverse transcriptase (Applied Biosystems, 

Foster, CA) was added to each tube. One tube did not receive reverse transcriptase enzyme, 

and therefore served as a non-template control for DNA contamination. The Thermocycler 

was programmed to run at 25°C for 10 minutes, 42°C for 2 hours, 95°C for 5 minutes, and 

stored at 4°C. The generated total cDNA was then used to evaluate mRNA levels of the 

genes of interest.  

 Real-time PCR (qRT-PCR):  Relative expressions of the genes of interest [IL-6, TNF, 

COX-II] were evaluated using qRT-PCR. TaqMan® Gene Expression Assays (Applied 

Biosystems, Foster, CA), which are pre-designed and pre-optimized gene-specific probe sets, 

were utilized and DNA amplification was performed using the Applied Biosystems qRT-

PCR machine (ABI 7300 HT) with the GeneAmp 7300 HT sequence detection system 

software (Perkin-Elmer Corp.) The PCR reactions were set up in wells of 96-well plates in a 

volume of 25 μL per well. The reaction components included: 1000 ng (5.0 μL) of 

synthesized cDNA; 12.5 μL of 2X Taqman® Universal PCR Master Mix; 1.25 μL of 20X 

Assays-on-DemandTM Gene Mix (e.g. TNFα); and 6.25 μL of qRT-PCR-grade RNAse-free 

water. The program was set as follows: an initial step of 50ᵒC for 2 min and 95ᵒC for 10 min 

and then 40 cycles of 95ᵒC for 15 s and 60ᵒC for 60 s. The relative amount was calculated 
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from the threshold cycles with the instrument’s software (SDS 2.0) according to the 

manufacturer’s instructions. Relative expression levels of the target genes were normalized to 

the geometric mean of the endogenous control gene, GusB. 

 

Protein expression studies (Western blot):  Protein expression studies were performed using 

Western blot for quantification of the proteins of interest in order to determine the extent to 

which Echinacea influences the protein expression of various key pro-inflammatory factors 

(IL-6 and COX-II), as well as activity of phosphorylated NFκB and HO-1 in the uterine 

cervix of mice with or without LPS-induced inflammation, as described below: 

Protein Extraction:  Protein was extracted from cervical tissue using CellLytic
TM

 M 

Cell Lysis Reagent (Sigma Aldrich) and protease inhibitor cocktail (Sigma Aldrich).  Tissues 

were weighed individually, with lysis buffer calculated per tissue (1 g tissue: 20 ml buffer).  

Tissues were placed into pre-chilled conical tubes and mechanically homogenized in the 

buffer for 1-1.5 minutes, washing the homogenizer with distilled water in between uses.  

Once tissues were homogenized, tubes were centrifuged for 10 minutes at 20,000 xg at 4ᵒC.  

Once centrifuged, the supernatant was transferred to a pre-chilled eppendorf tubes and stored 

in -80ᵒC freezer until ready for use.  

 BCA Protein Assay:  Once protein was extracted from the individual cervical tissues, 

a BCA assay was run to quantify protein concentration.  Using a Pierce BCA Protein Assay 

Kit (Thermo Scientific, USA) protein standards made up of varying concentrations of 

albumin and distilled water were made in eppendorf tubes, as was a working reagent (25 ml 

Reagent A, 500 µl Reagent B).  Protein sample concentrations in either 1:10 or 1:5dilutions 

were made in eppendorf tubes.  A 96 well micro plate was loaded with each standard in 
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triplicate (25 µl per well) and protein samples were loaded in triplicate (25 µl per well).   

After loading the plate, 200 µl of working reagent was added to each well.  The plate was 

then incubated at 37ᵒC for 30 minutes.  At the end of the 30 minutes incubation period, the 

plate was read in a spectrophotometer (Thermo Scientific, USA) at 562 nm, giving protein 

concentrations in ng/µl.   

 Gel Electrophoresis:  Once protein sample concentrations were quantified via BCA 

assay, sample proteins were prepared for gel electrophoresis.  The volume of 10 µg of sample 

protein was calculated using values generated from the BCA assay.  Once protein volume 

was calculated, volume of distilled water was also calculated [10 µl Total in well – desired 

protein volume (µl) – 2.5 µl (Sample buffer) – 1.0 µl (reducing agent)].  NuPage LDS 

Sample Buffer (4x) was added to each tube, followed by the correct amount of distilled 

water.  Protein samples were then vortexed prior to the addition of the calculated volume of 

protein.  Once tubes had all their respective solutions added, they were vortexed for 10-15 

seconds before being centrifuged for 30 seconds (or until all liquid had settled at the bottom 

of the tube).  Tubes then sat at room temperature while the electrophoresis chamber was set 

up.  While setting up the chamber, we first removed the pre-made gel from its plastic before 

taking off the comb and white tape; then the wells were flushed via pipette with running 

buffer.  The gels were then loaded into the electrophoresis apparatus, with the clamp down.  

We then carefully poured a small amount of 1x NuPage running buffer in between the two 

gels before making sure there were no leaks.  If there were no leaks, running buffer was 

added halfway up the chamber before adding 500 µl of NuPage Antioxidant; once 

antioxidant was added, the remainder of the chamber was filled with running buffer just 

above the wells.  At this time, the electrophoresis chamber set up was complete, so we 
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incubated protein samples in the water bath at 65ᵒC for 10 minutes.  While the protein was 

incubating, 1.3 µl of ladder was loaded into the gels into their designated wells (dependent on 

the gel map designated for each particular gel).  After incubation but before loading of 

protein samples, we added 1.0 µl of NuPage Reducing Agent to sample tubes.  Then we 

loaded the 10ul samples consisting of protein, distilled water, sample buffer and reducing 

agent to each well.  After the gels were loaded, the outer chambers were filled with running 

buffer.  Gels were then run at 125 volts for approximately 1 hour (we stopped once the blue 

dye was about to the bottom of the gels).  The final step in the gel electrophoresis process 

involves the use of an iBlot machine. The first step was to set up the machine by putting the 

bottom cathode on the bottom and soaking a piece of filter paper in distilled water until the 

gel was ready.  Gels were removed from the electrophoresis chamber one at a time, and using 

the spatula provided, the cassette was slowly peeled off being careful not to tear the gel; then 

the tops of the wells were cut off to form a nice square shape.  The gel was then placed above 

the bottom cathode (cassette up, gel facing down) and slowly transferred from the cassette to 

the bottom cathode.  Once the gels were placed onto the bottom cathode, making sure no 

loose pieces of gel were on top or around the gel, filter paper was placed on top of the gel, 

with the air bubbles rolled out using the rolling pin.  The top cathode was then removed from 

its packaging and placed on top of the filter paper (shiny side up), with all the bubbles rolled 

out with the rolling pin.  At this point we placed the sponge on top with the metal part of the 

sponge touching the metal part of the iBlot.  The machine was then latched shut and a red 

light shined indicating proper assembly of the apparatus.  The machine was set to P3, 7:00, 

and then ran for 7 min.  At the end of the 7 min run time, the sponge and top cathode were 

removed, exposing the filter paper, which was removed carefully.  At this point, before 
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removing the gels, a razor blade was used to cut the membrane apart separating both 

membranes, and then slowly and carefully the gels were removed.  Next the membrane was 

submerged in blotto and incubated overnight in 4ᵒC. 

 Primary Antibody Incubation:  During this stage of western blot analysis, primary 

antibodies were diluted to the appropriate dilutions previously optimized in our lab as 

suggested by the manufacturer [Santa Cruz Biotechnology, USA (NFKB 1:500, IL-6 1:1000. 

COX-II 1:500, Beta-actin 1:1000)] and added 2 ml per membrane; 1 ml front, 1 ml back.  

Using plastic sandwich bags, small bags were prepared for the membrane and primary 

antibody.  The membrane was then removed from blotto and put into the middle of the bag 

with one end towards the spine of the bag.  As antibody dilution accuracy is key, it was 

important to remove as much blotto as possible without drying out the membrane.  Next, 

both sides of the bag were sealed before primary antibody was pipetted into the bag (1 ml in 

the front, 1 ml in the back).  Before sealing the top of the bag, all air bubbles were removed.  

Once the top was sealed, the membrane was placed on a shaker with a heavy flat surface on 

top (such as a huge text book) to ensure even distribution of the antibody.  The membrane 

was then left overnight on the shaker. 

 Secondary Antibody Incubation and Imaging:   Once membranes were allowed to 

incubate overnight with primary antibody, we removed them from the shaker and removed 

the membrane from its bag into a small container containing 1x TBST for a 10 minute wash.  

The membrane was then washed twice more for 10 minutes each after the initial wash.  

During the wash period, the secondary antibodies were diluted to the appropriate dilutions 

previously optimized in our lab as suggested by the manufacturer [Santa Cruz 

Biotechnology, USA (NFKB 1:10,000, IL-6 1:10,000. COX-II 1:10,000, Beta-actin 
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1:10,000)]).  Sandwich bags were once again used to make bags for the membrane and 

secondary antibody to be incubated in.  After the third wash in 1x TBST, the membrane was 

placed in the middle of the open bag, with both sides sealed (as described for primary 

antibody incubation).  Secondary antibody was pipetted in (1 ml in front, 1 ml in the back).  

Before sealing the top of the bag, all air bubbles were removed.  These membranes were then 

placed on a shaker underneath a heavy textbook for one hour.  After the hour long incubation 

period, the membrane was removed from the bag and washed in 1x TBST for 20 minutes.  

After the initial wash, the membrane was washed twice more in 1x TBST for 10 minutes 

each wash.  After the three washes in 1x TBST, the membrane was washed in 1x TBS for 10 

minutes.  During this last wash, the developer was booted up according to manufacturer’s 

instructions.   While membranes were washing we prepared a peroxidase/luminol enhancer 

solution in the dark, as this solution is light sensitive (2 ml peroxidase solution, 2 ml of 

luminol/enhancer solution).  The solution was vortexed and kept in the dark.  Once all 

washing was complete, membranes were placed on saran wrap and 1 ml of 

peroxidase/luminol enhancer solution was added to each membrane, soaking for 5 minutes.  

At the end of the 5 minute period, membranes were picked up to drip off as much solution as 

possible without drying the membrane out.  The membrane was then placed on a new piece 

of saran wrap which was folded over to cover the membrane, being careful not to have any 

creases or bubbles.  The membranes were then places in a developing cassette and taken to 

the developer machine.   

 Developing Western Blot Membranes:  The developer is housed in a dark room.  

Water container was checked and verified to be empty prior to starting the development 

process.  The machine was further prepared for use following manufacturer’s instructions.  
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Once the machine was ready to use, we exposed the membranes onto photo paper for varying 

increments of time.  Once this designated time period had passed, the photo paper was 

removed from the developing cassette and placed into the developer.  Once the paper 

completed its run through the developer, we were able to take the film which now showed 

bands of protein indicative of each target proteins; we were able to quantify the changes in 

protein expression as compared to beta-actin using ImageJ (National Institute for Health, 

USA) for analysis.    

 

Basic Morphological Studies (Hematoxylin and Eosin staining, H & E):  Experiments were 

undertaken to examine the basic histology of uterine tissues following various treatments 

described earlier. Frozen sections were stained with the standard H & E staining procedure 

(VWR international LLC, USA) and imaged using Olympus DSU IX81 (Olympus, USA) to 

examine the overall tissue structure, their characteristics and cellular subpopulations and 

blood vessels.  

 

Statistical Analysis 

Data were analyzed using Student's t test and ANOVA (single factor). p-values equal to or 

less than 0.05 were considered to be statistically significant. 
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Results 

 In order to determine whether Echinacea inhibits infection-induced inflammation in 

the cervix, three animal model systems were utilized, including a non-pregnant 

ovariectomized in vivo model, a pre-term labor model and an ex vivo model. These animal 

models are complementary, with the advantages and disadvantages of each model outlined in 

Figure 3.  

 

 

Figure 3 Comparison of three model system 

 

Echinacea suppresses the activity of NFκB in the cervix of non-pregnant in vivo model 

system. 

 We used the non-pregnant in vivo model, as this was the most commonly used model 

in our lab at the time.  Here, we investigated the effects of Echinacea on the levels of 
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activated (phosphorylated) NFκB.  In the experiments where we examined NFκB, we used 

protein expression as an indicator of activity, as phosphorylation is indicative of activity.  

Our hypothesis is that Echinacea regulates LPS-induced transcription of pro-inflammatory 

factors by reducing the levels of activated NFκB, such as IL-6 and TNFα.  For this 

experiment, the control (C) was only treated with 0.9% NaCl for baseline levels.  LPS was 

used as a positive control, as it robustly simulates infection-induced inflammation.  Finally, 

the treatment group was initially administered Echinacea followed four hours later by LPS, 

in order to determine whether Echinacea can effectively block LPS-induced NFκB activities.  

The results from this experiment show that animals treated with 0.9% NaCl alone exhibited 

baseline levels of p-NFκB, whereas LPS-treated animals (LPS 100 µg, IP) showed a 

significant increase in p-NFκB levels compared to control.  Echinacea administered prior to 

LPS treatment, revealed a 4 fold (p= 0.0256) decrease in p-NFκB protein levels compared to 

LPS alone, showing p-NFκB levels were significantly inhibited by Echinacea compared to 

LPS alone (Appendix, Figure 4).  

 

Echinacea down regulates expression of pro-inflammatory factors (COX-II and IL-6) in 

the cervix of preterm labor mouse model 

 Having shown Echinacea’s ability to suppress NFκB activity in the non-pregnant in 

vivo model, we wanted to test whether the preterm in vivo model would yield similar results 

when all confounding factors – sex steroid hormones, adrenal hormones, and adipose tissue – 

were present.  Since IL-6 levels in preterm labor increase, we sought to investigate whether 

Echinacea could suppress LPS-induced levels of IL-6 mRNA and protein, in our preterm 

labor in vivo model, which is normally associated with increases in matrix metalloproteinases 

that are responsible for degradation of collagen in the cervix during cervical remodeling.  We 
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also looked at COX-II mRNA because COX-II is responsible for the conversion of 

arachidonic acid to prostaglandins, which stimulates myometrial contractions and ultimately 

ripening of the uterine cervix.  Successful suppression of these two pro-inflammatory factors 

(IL-6 and COX-II) by Echinacea could imply its potential for modulating inflammation-

induced cervical remodeling.  The negative control (C) in this experiment was treated as 

described above, however for the positive control (LPS only) and the treatment group 

(Echinacea + LPS) a higher dose of LPS (250 μg/mouse) was administered. Here, we show 

that Echinacea, sharply inhibits IL-6 mRNA and protein levels by 11 (p= 0.00019) and 2.2 

fold (p=0.0297), respectively (Appendix, Figure 5a-b).  We also show that Echinacea 

robustly inhibits COX-II mRNA levels by almost 200 fold (p= 0.000258).   

 

Tissue integrity, viability and the anti-inflammatory activities profile of Echinacea in 

the ex vivo model system 

 Having characterized some of Echinacea’s anti-inflammatory properties both in non-

pregnant and pregnant in vivo models, we wanted to develop a model that could potentially 

eliminate the confounding factors seen in both in vivo models (sex steroids, adrenal 

hormones, adipose tissues).  This led to the development of an ex vivo model, in which the 

entire cervical tissue was excised from the animal post-ovariectomy, with all treatments 

conducted in a microtiter plate.  In this particular experiment, we first wanted to make sure 

the ex vivo model was a suitable model for evaluating Echinacea’s anti-inflammatory effects 

on cervical tissue, so we compared the cervical histomorphology of hematoxylin and eosin 

(H&E)stained tissues from non-pregnant in vivo and ex vivo models.  Comparisons were 

based on tissue integrity and the cell types (epithelial cells, stromal cells, +/- immune cells) 
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present.  The negative and positive controls, as well as Echinacea treatment in the non-

pregnant in vivo model were performed as described earlier (see above), whereas in the ex 

vivo model, the negative control was vehicle-treated only (RPMI 1640), while the LPS 

treatment was ten-fold lower than the in vivo model (1 μg/well), and Echinacea treatment 

was 1 mg/well.  We show the presence of epithelial and stromal cells, indicative of tissue 

structure.  We also show that the Echinacea and LPS treated tissues look more like the 

negative control than the LPS only treated group, showing support for Echinacea combating 

the effects of LPS on these tissues (Appendix, Figure 6A-F). 

 After confirming the proof of principle for the ex vivo model, showing that tissues 

remain viable after being removed from the body, we wanted to test Echinacea’s ability to 

decrease LPS-induced levels of IL-6 and COX-II in the ex vivo model, and compare the 

results to what we saw in the preterm in vivo model.  The experimental treatments were as 

described before, except addition of a group treated with Echinacea only, to study the effects 

of Echinacea alone compared to control or baseline levels of IL-6 and COX-II mRNA.  We 

show that Echinacea significantly decreased LPS-induced IL-6 mRNA levels compared to 

LPS alone by 2.6 fold, with no statistical difference between the Echinacea alone treatment 

and the Echinacea and LPS treatment groups (Appendix, Figure 7a).  The same trend was 

noted with COX-II mRNA levels, with a fold change of 1.8 (Appendix, Figure 7b).  No 

significant difference was noted between Echinacea alone group and the negative controls, 

for both pro-inflammatory factors. 

 Thus far, we have demonstrated Echinacea’s ability to inhibit expression of LPS-

induced IL-6 and COX-II mRNA in both the in vivo preterm and ex vivo non-pregnant 

model, as well as the levels of p-NFκB in the non-pregnant in vivo model.  Next, we sought 
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to investigate whether Echinacea could diminish p-NFκB levels in an ex vivo model.  

Cervices were essentially treated as described earlier, except for the addition of a dose-

dependent treatment of Echinacea (doses ranging from 0.01 mg/well – 1.0 mg/well), with 

LPS dosage unchanged.  Here, we show that Echinacea inhibits LPS-induced activation of 

NFκB, in a dose-dependent manner, with the medium and highest concentration of 

Echinacea decreasing p- NFκB levels 2 and 3 fold, respectively, compared to LPS alone 

(p=0.0287) (Appendix, Figure 8). We chose to use the highest dose, however, as these 

findings were consistent with our earlier observation in the non-pregnant in vivo model 

(Appendix, Figure 8). 

 

Echinacea shows a down-regulatory effect on HO-1 protein (preterm in vivo model) and 

HO-1 mRNA (non-pregnant ex vivo model)  

 We investigated Echinacea’s effects on HO-1 protein and mRNA using both the 

preterm in vivo and non-pregnant ex vivo models, respectively.  Animals were treated as 

previously described for both the preterm in vivo and non-pregnant ex vivo models.  We show 

in the preterm in vivo model that Echinacea:  a) decreased HO-1 protein levels compared to 

LPS alone, and b) combined with LPS significantly elevated levels of HO-1 protein 

compared to the negative control (Appendix, Figure 9A).  We observed similar results from 

our non-pregnant ex vivo model, showing Echinacea a) decreases HO-1 mRNA levels 

compared to LPS alone, and b) combined with LPS significantly elevated levels ofHO-1 

mRNA compared to the negative control (Appendix, Figure 9B).   
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HO-1 inhibitor blocks Echinacea’s down-regulatory effect on NFκB 

Thus far, we have demonstrated Echinacea’s effects on HO-1 mRNA and protein 

expression in both the non-pregnant ex vivo and preterm in vivo models, respectively.  Next, 

we sought to further confirm Echinacea’s ability to induce HO-1 activity by investigating the 

effects of blocking HO-1 on levels of p- NFκB, using our non-pregnant in vivo model.  

Animals were essentially treated as previously described, except for the addition of a ZnPP 

only treatment, as well as a dose-dependent treatment of ZnPP (doses ranging from 0.0125 

mg/mouse to 1.25 mg/mouse) with Echinacea and LPS doses unchanged.  Animals treated 

with ZnPP, Echinacea, and LPS together showed an increase in levels of p- NFκB in a dose-

dependent manner, with the highest dose of ZnPP exhibiting a 2 fold increase from the 

negative control.  We also show a significant inhibition of activated levels of p- NFκB by 

ZnPP alone (Appendix, Figure 10). 
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Discussion 

 The purpose of the present study was to examine the ability of Echinacea to down-

regulate the expression of LPS-induced pro-inflammatory cytokines in mice cervix and its 

likely underlying mechanisms. The key findings of the study are that Echinacea:  1) 

attenuates expression of certain cytokines associated with precocious cervical remodeling 

(IL-6, COX-II), in three animal models, including non-pregnant in vivo, ex vivo and preterm 

labor models, 2) diminishes the activity of the master transcription factor of classical pro-

inflammatory cytokines, NFκB (phosphorylated), 3) promotes the expression of HO-1 in 

mice cervix, and that 4) HO-1 inhibitor blocks Echinacea’s attenuating effects on the levels 

of p-NFκB in the cervix, in a dose dependent manner.  These data suggest that the NFκB 

inhibitory activity of Echinacea is at least in part, mediated by up-regulation of the 

inflammatory mediator HO-1 by Echinacea.  The present study is the first to provide 

evidence for Echinacea’s anti-inflammatory activity and its likely underlying mechanism in 

the cervix. These data may prove useful in developing therapies that can be used to prevent 

and modulate inflammation-induced preterm labor. 

Microbial infection and the subsequent precocious and abnormal presence of 

inflammatory factors, including TNFα, IL-1 and -6, are known to induce premature uterine 

contractions and birth canal opening (Rizzo et al. 1996, Raso et al. 2002, Menon & Fortunato 

2007) and, ultimately, premature birth (Rizzo et al. 1996, Alderem & Ulevitch 2000, Beutner 

2000, Zhang & Ghosh 2001, Menon & Fortunato 2007).  When LPS, a cell wall component 

of gram negative bacteria, binds to white blood cells (WBCs) expressing its receptor [toll-
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like receptor 4 (TLR4)], it activates NFκB and, subsequently, increases the expression of the 

downstream pro- and or anti-inflammatory cytokines (TNFα, IL-6 and IL-10) (Alderem & 

Ulevitch 2000, Beutner 2000, Zhang & Ghosh 2001).  Because the female reproductive tract 

(from fallopian tubes to vagina) richly expresses LPS receptor subtypes (TLR 1-6), it is 

endowed with an extensive immune surveillance, which plays a vital role in defense against 

infection (Pioli et al 2004). Importantly, since preterm labor initiation can be triggered either 

in the cervix or upstream of it, i.e., uterus, this (presence of TLR) also implies that Echinacea 

may act not only on the cervix, but also the rest of the female reproductive compartments. 

Notable pro-inflammatory cytokines associated with preterm labor in humans include IL-6 

and TNFα, among others (Rizzo et al. 1996). For instance, in one study, of the 20% of 

subjects (women) that had microbial infection and abnormally elevated levels of IL-6 in the 

amniotic cavity and cervical secretions, 100% experienced preterm labor (Rizzo et al. 1996). 

IL-6 activates the immune system through its receptor complex, IL-6Rα and gp130 

(Kamimura et al. 2004), which in turn activate downstream transcription factors, such as 

STAT3 and MAPK (Kishimoto et al. 1995). Another key factor induced by infection is 

COX-II, the enzyme responsible for converting arachidonic acid to prostaglandins, which 

play an important role during labor (Gross et al. 2000). These pro-inflammatory factors are 

expressed in a variety of female reproductive tissues, including myometrium, fetal 

membranes and the cervix before and after labor (Young et al. 2002).  In the same study, 

Young et al (2002) showed that invading leukocytes secrete pro-inflammatory cytokines in 

multiple reproductive tissues, notably the myometrium, cervix, placenta, and fetal 

membranes, including IL-1β, IL-6, IL-8, and TNFα in biopsies taken after labor than in those 

obtained before labor (Young et al 2002).  Most importantly, an increase in IL-6 
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concentrations in cervicovaginal fluid (most likely from leukocytes) has been observed 

during labor at term and preterm (Young et al. 2002).  There is also support for the cytokines 

themselves acting as mediators of leukocyte recruitment at term, in a positive feed-forward 

manner – i.e., cytokines mediate leukocyte infiltration and the leukocytes in turn produce 

more cytokines, ultimately stimulating uterine contractions by inducing prostaglandin 

production (Young et al. 2002).  Taken together, the strong link between inflammation and 

preterm labor, and the ability of Echinacea to modulate pro-inflammatory factors, makes the 

present findings of potential clinical importance. 

 Medicinal plants have been used in various regions of the world for several centuries, 

including North America (Foster 1991, Hutchens 1992, Flannery 1998). However, the 

development of modern synthetic chemistry and target screening assays led to a sharp decline 

in the pursuit of herbal remedies (Binns et al. 2002, Woelkart et al. 2008, Altamirano-Dimas 

et al. 2009, Hudson 2012).  Recently, there has been renewed interest in herbal remedies by 

the general public in North America, with Echinacea topping the list (Cavaliere 2009). 

Correspondingly, there has been an increase in the number of studies that have characterized 

various biological activities of Echinacea, particularly its anti-inflammatory effects.  For 

instance, studies have shown that Echinacea attenuates expression of virus-induced pro-

inflammatory cytokines by neutralizing rhinovirus 1a (RV1A)-induced cytokine secretion 

(Sharma et al 2009b), including an almost complete inhibition of IL-6 and TNFα activities at 

a dose of 40 μg/ml of Echinacea extract (Sharma et al 2009b).  Also, when murine RAW 

264.7 macrophage cells, a cell line that is commonly used for studying lipid metabolism, 

inflammation and apoptosis, were activated to secrete high levels of pro-inflammatory factors 

using LPS, Echinacea extracts inhibited the levels of the pro-inflammatory factors [TNFα, 
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nitric oxide (NO), and inducible NO synthase (iNOS)] (Zhai et al. 2009), dose-dependently.  

Of note, Echinacea does not only inhibit LPS-induced inflammation, but also other 

inflammation-inducing irritants, such as carrageenan and croton oil.  Specifically, Echinacea 

administered intravenously attenuated carrageenan- and croton oil-induced rat paw edema 

and mouse ear tests (Barnes et al. 2005). Collectively, the present data are consistent with 

these previous data, and indicate that Echinacea can modulate inflammation in different 

tissues of the body. 

Echinacea’s ability to reduce inflammatory cytokines has been demonstrated in a 

variety of in vivo and in vitro models.  For instance, the effects of the three commonly used 

Echinacea species, E. angustifolia, E. pallida, and E. purpurea, both in vivo and in vitro, to 

inhibit the production of inflammatory mediators – such as nitric oxide (NO), TNFα and IL-

1β in activated macrophages, has been demonstrated (Zhai et al. 2007).  Another study using 

an in vitro model sought to test the effects of Echinacea treatment and rhinovirus infection 

on the activation of transcription factors in the BEAS-2B human bronchial epithelial cell line 

(Sharma et al. 2006).  The findings from this study showed an increase in 12 different 

transcription factors by both Echinacea extracts (uninfected) from basal levels and a decrease 

in transcription factors by both Echinacea extracts when infected with rhino virus – most 

dramatically with STAT4 and NFκB (Sharma et al. 2006).  This implies that Echinacea can 

act to down-regulate specific transcription factors associated with inflammation (Sharma et 

al. 2006).  Another study using BEAS-2B human bronchial epithelial cells looked at the 

effects of Echinacea treatment and rhino virus infection on pro-inflammatory cytokines IL-6 

and IL-8 (Sharma et al. 2009a).  This study found rhino virus induced IL-6 and IL-8 

increases can be reversed by Echinacea (Sharma et al. 2009a).  Other models have also been 
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studied.   For example, male BALB/c mice were used in a study conducted by Raso et al, 

where the anti-inflammatory effect of Echinacea was evaluated against carrageenan-induced 

paw edema in mice (Raso et al. 2002).  Mice were treated by gavage with Echinacea three 

days before injection with carrageenan and 72 hours post-injection (Raso et al. 2002).  This 

study found Echinacea to significantly inhibit edema and decrease COX-II and inducible 

nitric oxide synthase (iNOS), as well as inhibition of LPS-induced COX-II expression in 

peritoneal macrophages (Raso et al. 2002).  Another study using peripheral blood 

mononuclear cells (PBMC) attempted to track down the molecular method of action of 

Echinacea (Gertsch et al. 2004).  In this particular study, cells treated with Echinacea alone 

showed an increase in TNFα, β-actin and IL-8, with a marked decrease in IL-2 levels; 

however, Echinacea did inhibit LPS-mediated TNFα protein levels (Gertsch et al. 2004).  

Alkylamides, one of the bioactive constituents in all Echinacea ethanolic extracts, were 

found to significantly inhibit TNFα protein expression, as well as LPS-induced increase in 

NFκB activity (Gertsch et al. 2004).  This study suggested that the effects of Echinacea are 

mediated by cannabinoid receptor CB2 and modulation of cyclic adenosine monophosphate 

(cAMP), activation of JNK and p38 MAP kinases, as well as downstream activation of NFκB 

(Gertsch et al. 2004).  It is this final study, perhaps, that is most important to the present 

study.  Not only does it show marked inhibition of LPS-induced NFκB activity, but also 

attributes the activity to alkylamides, which are bioavailable in plasma following oral 

ingestion of Echinacea (Toselli et al. 2009).  Taken together, all of these studies show strong 

support for Echinacea (specifically alkylamides) as a modulator of inflammation.  

Here, we also examined Echinacea’s effect on the enzyme HO-1, which has several 

anti-inflammatory links, but has not been reported previously in reproductive tissues 
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(Zenclussen et al. 2011).  HO-1 is the rate limiting enzyme that breaks down heme from 

degraded red blood cells into carbon monoxide (CO), biliverdin, and free iron (Otterbein et 

al. 2003), and is believed to exert its anti-inflammatory properties through these catabolic by-

products (Nath et al. 1992,Willis et al. 1996, Lee & Chau 2002, Otterbein et al. 2003). 

Indeed, mice lacking HO-1 develop chronic inflammatory diseases (Kapturczak et al. 2004).  

In the liver, Echinacea-derived alkylamides promote expression of HO-1, and is believed to 

contribute to the hepato-protective effects against LPS-induced inflammation (Hou et al. 

2001), and infusion of the HO-1 inhibitor, ZnPP, in rats attenuates these beneficial hepato-

protective actions of HO-1, showing that HO-1 plays a protective role against 

ischemia/reperfusion injury, which is also associated with inflammation (Amersi et al. 1999).  

Further, Hou and others used murine macrophage cells to demonstrate that Echinacea-

derived alkylamides also induce expression of HO-1, which in turn inhibit expression of pro-

inflammatory cytokines (Hou et al. 2001). These earlier observations are consistent with our 

present data. In Figure 9, we show up-regulation of HO-1 mRNA (non-pregnant ex vivo) and 

protein (preterm in vivo) by Echinacea, which is consistent with previous studies; however, 

no significant difference in levels of both HO-1 mRNA and protein in cervices treated with 

Echinacea plus LPS compared to LPS alone were observed. This implies that LPS has no 

significant effect on Echinacea’s ability to up-regulate HO-1 mRNA and/or protein.  We also 

show that a known HO-1 inhibitor (Figure 10) attenuates Echinacea’s anti-inflammatory 

effects dose-dependently via up-regulating levels of activated or p-NFκB, implying that HO-

1 mediates Echinacea’s anti-inflammatory activities.  Data showing decrease of  p-NFκB 

levels by ZnPP alone compared to negative control levels was not expected and is for now 

unclear.  One possible explanation for this discrepancy could be post-surgery infection of the 
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negative control animals, which could account for the observed increase in levels of p NFκB 

compared to the ZnPP-only treated animals. However, more studies are required. 

Currently, our knowledge and understanding of HO-1’s action in reproductive 

biology is very limited. Notably, and of relevance to the current study, are reports that 

suggest that miscarriages in both human and mice, which are commonly triggered by 

microbial infection and inflammation (Menon & Fortunato 2007, Zenclussen et al. 2011), are 

associated with diminished local levels of HO-1. This implies that HO-1 may be an important 

player in modulating inflammation and the resultant loss of pregnancy. Further, this may 

perhaps explain why deletion of HO-1 leads to suboptimal placentation, as well as fetal 

lethality in mice. The present study is the first to demonstrate HO-1’s mediatory anti-

inflammatory activities for Echinacea in reproductive tissues in general, and cervix, in 

particular. These findings are of interest in that they show, for the first time, that Echinacea 

influences expression of a potentially important gene that may have broad reproductive 

functions, i.e., HO-1 does not only modulate inflammation, but also other key reproductive 

events associated with pregnancy, such as placental and fetal growth and viability 

(Zenclussen et al. 2011). 

We also report here development of an ex vivo model and demonstrate its suitability 

(tissue integrity and viability, and inflammatory response) as a bioassay for studying 

mechanisms and pathways underlying Echinacea’s anti-inflammatory activities. Although 

still in development, this model eliminates pregnancy-associated confounding variables by 

providing a tightly controlled environment, and will thus be especially useful as a target 

screening bioassay, as we attempt to follow, identify and isolate the exact extract 

candidate(s) in Echinacea responsible for the anti-inflammatory activities. This will be 
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accomplished through a series of sub-fractionation, chemical isolation steps and target 

screening. Data generated from this bioassay will then be used for the preterm labor mice 

model studies. We fully anticipate that isolated and concentrated sub-fractions and/or 

individual substances will induce higher and/or more prolonged anti-inflammatory activity 

on a per gram raw material basis. To date, whole hydro-ethanolic Echinacea has over 19 

bioactive isolated compounds that demonstrate anti-inflammatory activities, of note, luteolin, 

apigenin, caffeic acid, beta-sitosterol and limonene (Duke 1992).  Generally, according to 

recent reports, the most probable sub-fractions of Echinacea likely to mediate its anti-

inflammatory properties are alkylamides and polysaccharides (Clifford et al. 2002, Raso et 

al. 2002, Kraus et al. 2006, Hinz et al. 2007).  These compounds have been shown to 

influence multiple inflammatory signaling pathways and at various steps, including inhibiting 

the activity of IKKβ, interferon regulatory factor 3 (IRF3), and TLR3/TLR4-induced NFκB 

or IkB degradation (Lee et al. 2009).  The inhibition of these upstream factors decreases the 

activity of a plethora of downstream pro-inflammatory factors, such as TNFα, IL-6, IL-12, 

NOS, COX-II (PGE2) (Bouic & Lamprecht 1999, Shin et al. 2004, Ha et al. 2008, Lee et al. 

2009, Moon et al. 2009, Alappat et al. 2010, Loizou et al. 2010; Yoon et al. 2010).  Looking 

at Figure 5 and Echinacea’s effect on p-NFκB levels we see a strange increase in NFκB 

levels in cervices treated with low Echinacea prior to LPS compared to cervices treated with 

LPS alone.  Here, we expected levels to still be high compared to measurement of NFκB 

activity in the presence of a higher dose of Echinacea.  One possible explanation for this 

could be post-surgery infection in the mouse after ovariectomy that had not been resolved 

prior to excision of the cervix from the animal.  While the increase is strange, it does not 
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appear to be statistically significant compared to LPS alone, however conducting further 

studies may be necessary. 

In the present study, we use three different animal models that complement each 

other.  For example, in our preterm model, the response to LPS was seen in the 100 fold 

range, and Echinacea drastically reduced expression of pro-inflammatory cytokines, whereas 

in both non-pregnant in vivo and ex vivo models, the response to LPS treatment was mild, 

with only a 2-3 fold difference compared to Echinacea plus LPS.  On average, the Echinacea 

response was similar to the negative control (vehicle only, 0.9% NaCl).  This difference in 

the magnitude of response to infection between preterm and non-pregnant in vivo may reflect 

the differential influence of two major sex steroid hormones on inflammation: i.e., estrogen 

and progesterone.  While estrogen has anti-inflammatory activities, progesterone on the other 

hand is pro-inflammatory.  Therefore, one possible explanation for the remarkably high IL-6 

and COX-II mRNA levels in the preterm in vivo model (Figure 2) could be due to the 

influence of estrogen and progesterone on the expression of pro-inflammatory factors in the 

cervix (Pettipher et al. 1996, Deshpande et al. 1997, Kershaw & Flier 2004,  Gillgrass et al. 

2005, Nilsson 2007). 

In conclusion, we report a novel finding that Echinacea attenuates activity of NFκB and 

expression of its (NFκB) downstream pro-inflammatory cytokines, associated with infection-

induced preterm labor in the cervix of mice. We also developed an ex vivo cervical model 

and showed that the enzyme HO-1 could be one of the key mediators of Echinacea’s anti-

inflammatory effects in the cervix (see proposed working model, Figure 11). Through our 

working model (Figure 11) we propose that Echinacea acts through increasing transcription 

of HO-1 (perhaps via the p38 MAP kinase pathway) to block inflammation via up-regulation 
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of carbon monoxide, which in turn blocks transcription of pro-inflammatory factors via the 

NFκB signaling pathway.  These findings are significant in that they provide insight that 

could potentially lead to the development of natural strategies for modulating infection-

induced preterm labor. 
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Figure 4 Effects of Echinacea on phosphorylated NFκB in the cervix of in vivo non-

pregnant ovariectomized mice, as revealed by protein expression studies (Western 

Blot). Echinacea administered IP down-regulated levels of p-NFκB protein. Negative 

control (C) = vehicle only, 0.9% NaCl, IP; LPS alone = 100 µg, IP and Echinacea 

=1.0 mg/mouse, IP. n=3,** p < 0.05 LPS vs. C; *p < 0.05 E + LPS vs. LPS.  β-actin 

was used as a normalizer. 
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Figure 5 Effects of Echinacea on expression of IL-6 mRNA and protein, as well as COX-II 

mRNA in the cervix of preterm labor mice.  A) IL-6-mRNA and B) IL-6-protein, as revealed 

by real-time PCR (qRT-PCR) and Western blot analysis. Echinacea administered 2 times, IP, 

has a down-regulating effect on IL-6 mRNA levels and IL-6 protein expression compared to 

LPS only. n=3; * p < 0.05 LPS vs. C; **p < 0.05 E + LPS vs. LPS. β-actin was used as a 

normalizer in Western blot.  C) COX-II mRNA expression, as revealed by real-time PCR 

(qRT-PCR). Echinacea administered twice, IP, and has a down-regulating effect on COX-II 

mRNA levels compared to LPS only. n=3; *p < 0.05 E + LPS vs. LPS. 

* 
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Figure 6 Histomorphogical profile of the cervix of non-pregnant ovariectomized mice 

treated in vivo (A-C) and ex vivo (D-F) mice treated with Echinacea, as revealed by H 

& E stain.  In vivo model: Tissues in Echinacea + LPS-treated animals (IP), closely 

resembles histology of negative but not LPS alone group. A) Negative Control 

(vehicle only, 0.9% NaCl, IP); B) LPS alone (100 µg, IP); C) Echinacea (1 

mg/mouse) + LPS (100 µg, IP).  Ex vivo model: As in the in vivo model above, 

Echinacea-treated cervices incubated in a 48-well plate resemble the histology of the 

negative control, but not the LPS alone treatment group. D) Negative Control (media 

only, 1640 RPMI); E) LPS alone (1 µg/well); F) Echinacea (1 mg/well) + LPS (1 

µg/well).  All images were taken at 20x. “e” =epithelia, while “L”=cervical lumen. 
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Figure 7 Effects of Echinacea on A) IL-6 and B) COX-II mRNA 

expression in the mice cervix of the ex vivo model (non-pregnant 

ovariectomized), as revealed by real time-PCR. Echinacea has a down-

regulating effect on IL-6 and COX-II mRNA levels compared to the LPS 

alone group.  Negative Control (vehicle only, RPMI 1640); LPS alone 

(LPS 1μg per well); Echinacea only (0.1 mg/well); optimal dose of 

Echinacea high (1.0mg/well) + LPS (1µg per well).  n=3,* p < 0.05 

E+LPS vs. LPS. 
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Figure 8 Effects of Echinacea on phosphorylated NFκB in the cervix of ex vivo non-

pregnant ovariectomized mice.  Echinacea down regulates the activity of NFκB, in the 

mice cervix of the ex vivo model, dose-dependently, as revealed by Western blot 

analysis.  Negative control=vehicle only (RPMI 1640); LPS only = 1μg per well; 

Echinacea only=0.1 mg/well; and Echinacea [low=0.01mg/well; 

medium=0.1mg/well; high=1.0 mg/well] + LPS (1μg per well). n=3,* p < 0.05 High 

E+LPS vs. LPS; β-actin was used as a normalizer. 
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Figure 9 Effects of Echinacea on HO-1 protein expression and mRNA levels in the 

mice cervix of the preterm in vivo and non-pregnant ex vivo models, respectively. 

Echinacea: A) administered I.P down-regulates HO-1 protein levels compared to LPS 

only in the cervix of preterm labor mouse model, as revealed by protein analysis 

(Western blot). Negative control=vehicle only, 0.9 % NaCl, IP; LPS alone (250 

μg/mouse, intrauterine); B) induces expression of HO-1 mRNA in an ex vivo non-

pregnant ovariectomized mouse model compared to control (negative), as revealed by 

Western blot and real time PCR, respectively. n=3;* p < 0.05 E+LPS vs. LPS; β-actin 

was used as a normalizer. 
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Figure 10 HO-1 inhibitor blocks Echinacea’s down regulatory effect on the activity 

of NFκB in cervix of mice treated with LPS as revealed by Western blot analysis.  

n=3;* p < 0.05 ZnPP vs. C. β-actin was used as a normalizer.  The table below the 

figure indicates the solutions present in each treatment group, with a + indicating that 

a particular solution was used while – indicates it was not.   
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Figure 11 Proposed working model of Echinacea in regulating expression of pro-

inflammatory factors in the cervix. Echinacea induces transcription of heme-

oxygenase-1, which in turn blocks transcription of pro-inflammatory factors via its 

heme byproduct, carbon monoxide (CO). 
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